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Abstract

The possibility of having inflation in a renormalizable cosmological model is
investigated. The Cosmic No Hair Conjecture is proved to hold for all Bianchi types
except Bianchi 7X. By the use of a conformal transformation on the metric we show
that these models are equivalent to the ones described by the Einstein-Hilbert action
for gravity mivuimally coupled to a set of scalar fields with inflationary potentials.
Henceforth, we prove that inflationary solutions behave as attractors in solution
space, making it a natural event in the evolution of such models.
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1 Introduction

-

Inflation has become one of the most desirable features of any cosmological model.
There are several reasons for this, ranging from particle physics considerations to the
large scale structure of the spacetime around us. Since most of these issues have been
extensively discussed in the literature we shall just refer the reader to the relevant source
1].

One amongst many problems solved by inflation is that of explaining the isotropy and
large scale homogeneity of the observable part of the Universe (Hy' ~ 10%%cm). As a
bonus inflation provides us with a mechanism to produce density perturbations that could
be responsible for the formation of structure in the Universe after inflation (see Turner in
(1))

At the moment there are several models for inflation, the so called new inflation
proposed by Albrecht and Steinhardt 1], the chaotic inflation proposed by Linde {1] and
the higher derivative gravity models [2], [3]. The first two models ate based on a rather
similar theory, namely that of gravity coupled minimally to a real scalar field. Even
though the ideas behind these two theories are rather different, in practice one of the few
differences is the form of the potential on which the scalar field moves (e.g. Coleman-
Weinberg type vs. m?¢? or Ag*). The important feature of these two models is the
existence of a very small coupling constant (see Turner in [1]). However, the chaotic
scenario seems to be more natural in the sense that the form of the potential nceded is
vn::vre generic and the restrictions imposed on the initial conditions for the fields are less
severe. The third model is substantially different, both in principle and in practice. It is
based on adding extra terms, proportional to the Riemann tensor square and some of its
contractions, to the standard Einstein-Hilbert action. The appeal of this theory resides
in the fact that it contains inflationary solutions without having an inflaton scalar field

(2] - [4]. Inflation is then & consequence of (almost) pure gravitational interactions.
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In the first two theories inflation appears as a generic feature, not only when the
spacetime is the familiar flat or open Robertson-Walker but even when anisotropic case
are considered [8]. These results have been extended to a large class of inhomogeneous
open or flat models (nonpositive three curvature i.e. *R = P < 0) for the case of new
inflation [9], and for the R? model [4-7]. We would like to add that some arguments have
been given in support of the idea that closed models will also inflate unless their spatial
topology is 52 or §? x S* (see Barrow in {7]). This would certainly enlarge, and contribute
to the measure of the set of models that undergo inflation {10].

The motivation for any of the above theories is understandable, almost all theories
of the Universe contain at least one scalar field and gravity. The usual argument for
adding higher derivative terms to the gravitational action is the renormalizability of the
theory [11]. The divergences in the gravitational action to first order are proportional to
R? R, R* and R, . R*** soit is only natural to add these terms in order to renormalize
the theory. On the other hand we know of the existence of scalar fields in the theory so
it seems only natural to have at least one of these. The renormalizability of the theory
demands an additional interaction term between the graviton and the scalar field of the

form —1£¢?R [11]. The lagrangian can then be written as (see Brown and Collins in [11})
L= l:‘ + £¢ + Cg¢ (1.1)

where £, and £, are ihe gravitational and scalar field lagrangians respectively and Lgy

represents the interaction term. These are given by

€, = A+roR+ao (R — 4R, B™ + Ry B*)

+bgC e CHP° + CoR’ (12)
Lo = ~5(V8) - V(4) (13)
1 2
f.,,) = ‘§‘£¢R (1'4)



where V(@) is some arbitrary renormalizable potential, and A, o, £, 2o, b, ¢o are constants
(satisfying the renormalization group equations(11]). ky! is proportional to 16rGy, but
for practical purposes we will let the proportionality factor unspecify. C. 0 is the Weyl
tensor and will vanish for conformally flat metrics (likein the RW case). The quantity mul-
tiplying ao is the Gauss-Bonnet density, when integrated over the invariant four-volume
/—gd'z it gives a topological invariant, so its variation vanishes and as a consequence it
does not contribute to the equations of motion, for this reason we shall set ag = 0 (see
Barth and Christensen in [11]).

The theory described by the above equations is very general and it contains many
special cases that have been studied in the past. Since all of these are important in their
own right we have compiled two tables of references containing most of these and indicated
whether these undergo inflation. The cases have been separated into two classes. Table
one represents purely gravitational models, i.e. £y = L4 = 0, while table two comprises
the cases where a scalar field is present. The standard case ag = by = ¢o = { = 0 has been
omitted from the table while those marked with *** are the ones studied in this paper.

We would like to comment that setting xg = 0 does not mean we are setting the
gravitational constant to zero, but rather that either at some stage in the early universe
the quadratic terms or the £¢*R terms are the dominant ones in the action, or that
gravity is induced by a symmetry breaking mechanism where ¢ acquires a non zero VEV
determining the effective gravitational constant [12].

The paper will be organize as follows. In Sec. 2. we will review the induced gravity
case and by the use of the cenformal transformation recast its results and consequences,
we could think of this as the case (kg = 0). In Sec 3. we shall study a much more general

cas=. We shell finalize with some commments and conclusions



2 Induced Gravity Model

This model was first proposed by Zee [12] as an attempt to use symmetry breaking
to generate the Einstein term in the action at low energies. The model is described by a

lagrangian of the form

L= 3R~ 5(V4) - V(4) (2.1)

where V() = 3(¢?—n°)? and 8me = —¢ is positive. In this model the present gravitational

constant would be given by the VEV of the scalar field, i.e. Gy = (¢ < ¢ >?)"'. The

existence of inflationary solutions had already been noticed by Acceta et al {12]. They

found that exponential and power law inflation occured for ¢ — oo and ¢ — 0 respectively
for not very special values of € and A.

We will now show, using the conformal transformation technique, why is it that this
model inflates naturally in the isotropic case and subsequently generalize this result to the
anisotropic models. By conformally transforming the metric, the action can be rewritten
as the Einstein-Hilbert action in minimal coupling with a scalar field (this was first done
for the R + eR? model by Whitt [17]). The advantage of this transformation is clear, we
can analyze the behaviour of the scalar field simply by looking at the potential in which
it moves.

Let us consider the following conformal transformation:

duv = Kled’g (2.2)

In tecms of this new metric th- action coraing from (2.1 becomes

s = [day/=5[35R@) - 399 - V() (2.3)
P =2 6: : Ing (2.4)



v = [ - emel-2 w)r (2.5)

Bﬁ"e2

Fig.1 shows the potential f/’(l/:) forp =1, e= 3, x = 1. It is easy to understand why
the model undergoes exponential inflation for large positive ¥ ( ¢ — o0), the potential
is so flat the that model behaves as if dominated by an effective cosmological constant
Aesy = 3ao, producing the usual slow rolling of the ¢ field. In these regime we can
transform back to the real spacetime where ¢ lives and see that inflation takes place as
well. Following the exact same logic we deduce that power law inflation is also possible

when 1 is a large negative number (¢ — 0). The asymptotic form of V() is given by

€

- 4
v exp( 1+ B¢

k) for P — —oo (2.6)

then provided e < ; ( the exponent is smaller than v2 ) power law inflation will occur.
The condition on € ensures that the potential is not too steep. Power-law inflation in the
fictitious g-world will always guarantee power-law inflation in the real g-world, we can see
this by 'setting the scale factor & o< i then e x tP and if > 1 then p =25 — 1> L.

Let us now turn to the anisotropic cases. We could of course try to prove the generality
of the result by direct calculation, but this could be extremely difficult and time consum-
ing. Instead, we shall use a shortcut. In order to go from one representation to the other
we have not specified the form of the metric g,, (or g, ) so we can obtain our results in
either world and transform it back. Notice that in the § world the energy-momentum ten-
sor for the scalar field subtracting A.s; setisfies the dominant and weak energy conditions.
Hence, we can apply Wald’s cosmic no hair conjecture [8] and conclude that inflation will
always take place (except maybe in Biancli 1X). This result can be further extended
to @ class of :nhoniogeneous spacetimes with nonposilive three curvature. Inflation is a
natural event if the universe starts out from a region of large positive ¢. If, on the other
hand ¢ — 0 (3 — —oo), we can use a similar result found by Moss and Sahni [8] for the

case of power law inflation (unfortunately this result only applies to the case of a massive



scalar field) to infer the generality of the event.

3 Renormalizable Model

In this section we shall consider a more general case. The model is described by eq.

a
2x3

i 1 1
L= g5 -6 R+ R — (V) - V(4) (3.1)

where a cosmological constant A has been included in V().

As in §.2, we will use a conformal transformation to reduce the system (1.1) to that
of gravity coupled to two scalar fields. Such a system is easy to analyze. We need only
to know the form of the potential to deduce the dynamical behaviour of the scalar fields.

We will outline the method for finding the conformal transformation that will do the
trick. Firstly, write down the basic equations coming from the variation of (1.1), then

perform an arbitrary conformal transformation of the form
v = eh(s’)guv

where w is an unknown function to be determined later. Secondly, calculate the second
order derivative of R and w, identify these terms so as to eliminate them from the equations
and finally write the leftover as “Einstein’s ” equations with some scalar fields. This
technique can be used for an even more general case [14].

Following the above method, we find
_ K 1 2.2
w= 7§¢2 Eln [1—.-: {o +2aR] (3.2)
and the equivalent action

S= [day3 [s5RE) - 2Ty - SIS - U@8)]  (33)



where the potential in the §-world is
2
0(6:8) = g [1 - (1= ANV 4 VIV () (3.4)
Now we shall analyse the potential I}'(é,gb) in two different cases:
Case A : V(¢)=0

Let us focus our attention in the case £ > 0. The other case is rather similar so we will

omit it. It is useful to define a critical value for the scalar field as
¢ = (576)7? (3.5)

then the potential U(¢,%) has a zero at

¢=do= ¢=J 1 - exp( §mp) (3.6)

The potential is shown in Figs. 2a and 2b. From this and Eq. (3.4) we find that there
is a very flat plateau in the potential for large 9, unless ¢ is much larger than ¢.. The
evolution of such a model might proceed as follows. Near the Planck scale the Universe is
probably in an excited state and its energy is larger than the plateau. We could imagine
then the universe-particle hovering over the potential. As time goes by it might land on
a region of large 1. If so then it will effectively becomes dominated by 2 cosmological
constant, hence invoking the No Hair Conjecture, we would conclude that, if it is an open
or flat Bianchi model {or a sufficiently constraint Bianchi JX ), it will inflate. If ¢y > 0
but not to large, then the model will not inflate (it might even land at the minimum of
the potential, however we belive this is highly unlikely). It then continues on a slow roll
towards the minimum inflating and becoming more isotropic and De Sitter-like as it goes
along, ending completely isotropic at the bottom of the potential. The isotropization time
is of order one Hubble expansion time 7 = 2+/6a, when translated into the g-world, the

time scale becomes

r= exp(—-—n\/-g.qbl)f' (3.7)



where 1, is the value of 1 when the universe becomes isotropic (see also [8]). Because of
slow rolling during this period, the value of ¥ changes very slowly hence the definition of
¥ is not too ambiguous.

One interesting feature in this model must be mentioned : After the inflationary period
has come to an end, the universe evolves towards the zero of the potential {as defined by
(3.6). Moreover, from this eq. we find that the value of the ¢ field at zero is bounded
by the critical value, i.e. ¢ < ¢.. This is interesting because in the anisotropic case a
universe where gravity is not minimally coupled to a scalar field is boun& to encounter
a singularity at ¢ > @.. This effect was first discussed by Starobinskii [16]. However, if
curvature square terms are taken into account (as in our model), then the universe always
evolves into the region with ¢ < ¢.. Hence, even if the universe starts with ¢ > &, it

does reach its present state.

Case B: V(¢)#0
This case is a little more involved as it depends on the explicit form of V(¢). U (¢, %) is
depicted in Figs. 3a and 3b for V(¢) = —3m?¢? + $A¢*. Nevertheless, if the scale of the
potential V(@) is much smaller than U(#,%) (for example: V(¢) might be a GUT scale
or below while U(#$,%) could be at the Planck scale), then we can analyse the potentials
separately. When the universe is more or less at the Planck scale, we can neglect the
contribution coming from V(#). The dynamical behaviour of the scalar fields are the
same as in Case A, i.e inflation is driven by the R? term. However, after inflation, when
the universe evolves into the potential “zero” line, the contributior from V{¢) becomes
important.

Hereafter we shall discuss the evolution of the universe after such a stage. A relation

similar to (3.6) can be found between 1 and ¢, and using it we can rewrite the action and



the potential U(¢,¥) as

5 = [T RE) - S (99 0] (38)
N 1
U= Gy @ 39

where ¢, = [x2£(1 — 6£)]! as in {13]. This theory is the same as one with non-minimal
coupling to gravity and has already been investigated in (13]. There it was found that
inflation only occurs if £ < 0. In particular, if § is negative and V(¢) contains a ¢* term,
then the model has two inflationary periods, providing a realization of the double inflation
proposed by Turner and Silk {15] (see also [6]). We would like to point out that generally
one of the difficulties of Planck scale inflation is that a closed universe may collapse more
or less in a Planck time before reaching the GUT stage, however the Planck scale potential
is troublesome because it produces too large density perturbations. If, on the other hand,
we find double inflation (one at Planck scale, the other at GUT scale), we can solve this
problem. The first inflation will prevents the universe from collapsing, while the second
one would guarantees the present universe isotropy and homogeneity on the large scale,
while providing the appropriate density perturbations.

As a special case of this model we will investigate the induced gravity model with an

R? term (no linear term in R). Here the conformal factor is given by
_1 2,42
w= 2ln x‘ed’ + 2aR (3.10)

and the potential in the §-world is

1
Bax?

[1 - n’eq&’e"ﬂ"“"]? + e Vimy(g) (3.11)

where V(¢) = 2(¢* — n?)* . Again for a similar choice of parameters we show {'($, %)
in Fig. 4. We find that double inflation is also present for exactly the same reasons as
mentioned eatlier. The first inflation occurs due to the curvature squared term. At the

end of this period the potential V(¢) becomes important and since its shape is the same
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as that shown in Fig.1, we find a second inflation, this could be exponential or power law

depending on exactly where it [ands.

4 Concluding Remarks

In this paper, we have considered a renormalizable theory, which consists of curvature
square and non-minimally coupled terms. We have shown that by using conformal trans-
formations on the metric these theories can be converted into the normal gravitational
theory in minimal coupling with a set of scalar fields. These theories are much simpler
to analyze by using elementary techniques about the motion of point particles in a given
potential than the original theory. The general conclusion is that anisotropic model (and
isotropic ones) undergo inflation in these theories without having to fine tune parame-
ters. The general feature is the fact these scalar fields have potentials (in the transformed
world) that are extremely flat for large positive values of the fields giving rise to exponen-
tial inflation or have the right curvature to produce power law inflation for large negative
values of the fields.

The conclusion was reached not by solving the evolution equations for these fields but
rather by showing that the energy momenium tensor of these theories satisfies the strong
and dominant energy conditions and then invoking the No Hair Conjecture.

We would like to finish with a few remarks:

(i) Although the analysis in the fictitious §-world is easier than in the original g-world,
we alwzys have to return to the original system in order to know what is bappening tc
our model.

(ii) The use of conformal transformations is inconscciuential because the analysis is

basically of a classical nature. However, if we were interested in quantum (or semiclas-
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sical} process, like calculating density perturbation in these models, the two classically
equivalent systems might not (and probably are not) equivalent any longer.

(iii) We have not consider Weyl curvature square terms because in that case our simple
transformation breaks down (remember that the Weyl tensor is conformally invariant) and

so it is impossible to get rid of this term in the action.
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Figure Caption

Fig.1 The potential V(3) = W [1 —exp(—2,/ﬁ;‘—‘mb)]2 with Vo = $35. The special

choice n = 1, e = {, x = 1 has been made.

Fig. 2a View from above of the potential (3.4) for the case V(¢) = 0 and ¢ = 0.01. Both

the flat plateau and the minimum are clearly seen.
Fig. 2b View from below. Here the minimum of the potential is clearly shown.

Fig. 3a View from above of the potential (3.4) when V(¢) = —im?¢® + 12¢*. in this
particular case we took § = 0.005, m? = 10, A = 0.1 in order to highlight some of

the features.

Fig. 3b View from below

Fig. 4 The potential 3.11with § = 0.1, 5* = 33.33, A = 0.6 in order to highlight some of

the features.
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